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Beszámoló a 2024. évi Eötvös-versenyről

Az Eötvös Loránd Fizikai Társulat 2024. évi Eötvös-versenye október 11-én
délután 3 órai kezdettel tíz magyarországi helyszínen1 került megrendezésre. Ezért
külön köszönettel tartozunk mindazoknak, akik ebben szervezéssel, felügyelettel
a segítségünkre voltak. A versenyen a három feladat megoldására 300 perc áll
rendelkezésre, bármely írott vagy nyomtatott segédeszköz használható, de (nem
programozható) zsebszámológépen kívül minden elektronikus eszköz használata
tilos. Az Eötvös-versenyen azok vehetnek részt, akik vagy középiskolai tanulók, vagy
a verseny évében fejezték be középiskolai tanulmányaikat. Összesen 54 versenyző
adott be dolgozatot, 24 egyetemista és 30 középiskolás.

Ismertetjük a feladatokat és azok megoldását.

❄

1. Egy léggömb elasztikus viselkedése a fal rugalmas energiája segítségével jelle-
mezhető. Ha a jó közelítéssel mindvégig gömb alakú lufi mérete a feszítetlen méret
λ-szorosára változik, akkor a léggömb rugalmas energiája a 2λ2 + λ−4 − 3 kifejezés-
sel egyenes arányban növekszik egészen addig, míg végül λ ≈ 3 érték körül a lufi
kidurran.

A kezdetben ernyedt állapotú léggömböt egy kompresszorhoz csatlakoztatott
T-alakú elosztó egyik kivezetésére kötjük, a másik kivezetésre pedig egy vékony
üvegcsőből készült vizes manométert rögzítünk az 1. ábrán látható módon. A víz
a cső 20 cm hosszú szakaszát foglalja el. A kompresszor elindítása után azt ta-
pasztaljuk, hogy a folyadékszintek az eredeti helyzetükhöz képest lassan 5 cm-rel
mozdulnak el, mialatt a léggömb átmérője 5%-kal növekszik. Mi fog történni ez-
után?

20 cm

1. ábra
(Vigh Máté)

1Részletek a verseny honlapján: http://eik.bme.hu/~vanko/fizika/eotvos.htm
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Megoldás. A lufi rugalmas energiája egy alkalmas E0 konstans bevezetésével így
írható:

E = E0
(
2λ2 + λ−4 − 3

)
.

Meggyőződhetünk róla, hogy nyújtatlan állapotban (azaz λ = 1 esetén) a rugalmas
energia a várakozásnak megfelelően zérus, λ > 1 értékekre pedig E(λ) monoton nö-
vekvő függvény. Vajon hogyan határozható meg ebből az összefüggésből a lufiban
uralkodó p túlnyomás értéke? Alkalmazzuk a virtuális munka elvét: ha a léggömb
térfogatát kis ∆V értékkel megnöveljük, a bezárt és a külső levegő együttes mun-
kavégzése éppen egyenlő a rugalmas energia növekedésével:

p∆V = ∆E.

A lufi pillanatnyi térfogata a kezdeti V0 térfogattal V = V0λ3 módon fejezhető ki.
Ennek kicsiny megváltozása a magasabb rendű tagok elhanyagolásával a követke-
zőképpen közelíthető:

∆V ≈ 3V0λ2∆λ.

Ehhez hasonlóan a rugalmas energia kifejezése is sorba fejthető:

∆E ≈ E0
(
4λ − 4λ−5)∆λ.

Az eddigiek felhasználásával a túlnyomás kiszámítható:

p = ∆E

∆V
=

4E0
(
λ − λ−5)∆λ

3V0λ2∆λ
= p0

(
1
λ

− 1
λ7

)
,

ahol a rövidség kedvéért bevezettük a p0 = 4E0
3V0

jelölést (ami nem azonos a külső
légnyomással).

A feladat szövegéből tudjuk, hogy p(λ = 1,05) = 10 vízcm, hiszen ha a vízszintek
5 cm-rel mozdulnak el, akkor a folyadékszintek különbsége 10 cm lesz. Ebből:

p0 = 10 vízcm
1,05−1 − 1,05−7 = 41,4 vízcm.

Érdemes kiszámítani a nyomás értékét a következő két speciális esetben:
λ = 1 esetén (ernyedt állapotban) p valóban nulla, ahogy várjuk.
λ = 3 esetén (azaz a kidurranás határán) p = 13,8 vízcm.

Ekkora túlnyomást a manométerben lévő 20 cm hosszú vízoszlop ki tud fejteni.
Ebből azt a hibás következtetést vonhatjuk le, hogy a lufi felfújódása egészen addig
folytatódik, míg a vízszintek elmozdulása 13,8

2 = 6,9 cm-re nő, majd ekkor a lufi
kidurran.

Vajon hol a hiba ebben a gondolatmenetben? Ehhez vizsgáljuk meg részlete-
sebben a p(λ) függvényt (2. ábra)! Numerikus értékek behelyettesítésével észre-
vehetjük, hogy a nyomásnak λ = 1 és λ = 3 között maximuma van. (A jelenséget
tapasztalatból is ismerjük: egy lufit kezdetben nehezebb, majd egy bizonyos méret
felett könnyebb felfújni.)
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p (vízcm)

20

30

10

0
1 1,5 2 2,5 3

2. ábra

A maximum pontos helye deriválással határozható meg:

dp

dλ
= p0

(
−λ−2 + 7λ−8) .

Ez a derivált zérus, ha

λ = λ∗ = 6
√

7 = 1,38, ahol p(λ∗) = 25,7 vízcm.

Mi fog tehát történni? Ahogy az a 2. ábráról látszik, a lufi tovább növekszik
egészen addig, amíg a túlnyomás eléri a 20 vízcm-es értéket, azaz a folyadékoszlop
már ekkor teljes egészében a jobb oldali csőszár függőleges részébe kerül. Innentől
a nyomás nem növekszik tovább, és így a lufi mérete is egy ideig állandó marad,
a kompresszor pedig immár gyorsabban emeli a vízoszlopot a csőben (hiszen a
lufiba már nem kell levegőt fújnia). Amikor a víz elkezd kifolyni a csőből, akkor
a nyomás, és így a lufi mérete is csökkenni kezd. Innentől a kompresszorból és a
leeresztő lufiból kiáramló levegő is az egyre kisebb tömegű vízoszlopot nyomja ki,
amely így egyre gyorsulva „kilövell” a csőből. Amikor minden víz kifolyt a csőből,
a lufi visszakerül a teljesen felfújatlan állapotba (a kompresszor pedig ekkortól a
szabadba fújja a levegőt).

A lufi maximális méretéhez tartozó λ értéket a p(λ) = 20 vízcm egyenlet megol-
dása adja, amelyet iterálással vagy grafikusan (2. ábrán zöld vonal) kaphatunk meg:
λmax ≈ 1,145, azaz a lufi átmérője a folyamat során mindössze 14,5%-kal növekszik
meg az eredeti méretéhez képest.

Megjegyzések. 1. A folyamatok időbeliségének kvantitatív vizsgálatához további nume-
rikus adatok szükségesek. A 3. ábrán látható grafikonok a következő feltevésekkel készül-
tek: a lufi kezdeti sugara 2,5 cm, a manométer csövének belső keresztmetszete 0,1 cm2,
az alsó ívének hossza 4 cm, a kompresszor térfogatárama 0,54 cm3, amivel a feladat-
ban szereplő λ = 1,05 érték és s = 5 cm folyadékszál-elmozdulás épp 20 s alatt történik
meg. A grafikonokon a folyadékszál s elmozdulása, a bezárt levegő p túlnyomása és a lufi
méretét leíró λ paraméter látható az idő függvényében.

2. Ha a folyadékszál hossza nagyobb lenne, mint a maximális nyomáshoz tartozó
25,65 cm, akkor a nyomás elérné a maximális értéket, majd csökkenni kezdene, de a
lufi tovább fújódna, míg λ ≈ 3 értéknél kipukkadna.
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2. A súlytalanság állapotában egy R sugarú, L ≫ R hosszúságú és d ≪ R falvas-
tagságú alumíniumcső a szimmetriatengelyére merőleges, homogén, B indukciójú
mágneses mezőben helyezkedik el. A csövet tengelye körül ω0 szögsebességgel meg-
forgatjuk, majd magára hagyjuk.

a) Vázoljuk fel a cső kiterített palástjáról készült rajzon a csőben kialakuló
áramvonalakat!

b) Írjuk le a cső mozgását az idő függvényében!
(Vigh Máté)

Megoldás. a) Ha a cső a mágneses térre merőleges irányban mozogna (de nem
forogna), akkor a Lorentz-erő a töltéseket szétválasztaná, és az így kialakuló elekt-
rosztatikus tér kiegyenlítené a Lorentz-erőt, egyensúlyi állapot alakulna ki, és áram
nem folyna (4. ábra).

Esetünkben viszont a cső palástjának két átellenes része ellenkező irányban
mozog, így a Lorentz-erő is ellentétes irányú lesz, aminek következtében a cső
végeinél záródhatnak az áramvonalak, és így nem lesz jelentős töltésfelhalmozódás,
hanem az 5. ábrán látható módon zárt áramkör jöhet létre.
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4. ábra

B
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(     r)   B

L

r

(     r)   B

5. ábra

Az L ≫ R feltétel miatt a cső végeitől eltekintve az elektrosztatikus tér elha-
nyagolható, és így a cső falában

j = σ(ω × r) × B,

j(α) = σωBRcosα

áramsűrűség alakul ki, ahol ω a cső pillanatnyi szögsebessége, σ az alumínium fajla-
gos vezetőképessége (a fajlagos ellenállás reciproka), 0 ⩽ α < 2π pedig a tengelytől
a palást adott pontjához mutató r sugár és a mágneses indukció B vektora által
bezárt szög. A cső végein felhalmozódik valamennyi töltés: ezek „térítik el” a cső
végén az áramvonalakat. A kialakuló áramvonalakat a 6. ábra mutatja.

2

R

L

2

0

6. ábra

b) I. módszer. Az L ≫ R feltétel miatt a cső végével, mint „széleffektussal”
nem foglalkozunk, csak a csőben a cső tengelyével párhuzamosan folyó áramokkal.
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Ezekre a mágneses tér erőt fejt ki, egy dV kicsiny térfogatra ható erő:

dF = j × B dV.

Az erők és a tengelyre merőleges forgatónyomaték-komponensek vektori eredője
a szimmetria miatt nulla, így a cső tömegközéppontja nem mozdul el, és tengelye
nem fordul el. Ugyanakkor a tengellyel párhuzamos forgatónyomaték-komponensek
eredője nem nulla, a cső forgása így lassulni fog. (Az áramok miatt hő disszipálódik,
így a cső energiája biztosan csökkenni fog. Ezt mondja ki a Lenz-törvény is.) A
cső kicsiny dRdα keresztmetszetű, L hosszúságú, dV = LdRdα térfogatú keskeny
csíkjára ható tengellyel párhuzamos forgatónyomaték-komponens:

dM = r × dF = r × (j × B)LdRdα,

dM = −RjB cosα · LdRdα = −σωB2LdR3 cos2 αdα.

(A negatív előjel azt fejezi ki, hogy a forgatónyomaték-komponens a szögsebesség-
vektorral ellentétes irányú.) Ennek összegzése a teljes csőre

M = −σωB2LdR3
2π∫

0

cos2 αdα = −σωB2LdR3π.

(Ezt az eredményt a szinuszos jel effektív értéke alapján is ismerhetjük: az átlagos
érték 1

2 és 1
2 · 2π = π, vagy a cos2 α = 1

2 (1 − cos2α) átalakítás után szemléletesen is
láthatjuk.) A vékony falú cső tehetetlenségi nyomatéka

Θ = mR2 = 2πϱLdR3,

ahol ϱ az alumínium sűrűsége. A cső tengely körüli forgását leíró mozgásegyenlet:

dω

dt
= M

Θ = −σωB2LdR3π

2πϱLdR3 = −σB2

2ϱ
ω.

A differenciálegyenlet ugyanolyan alakú, mint a jól ismert radioaktív bomlási tör-
vény, így megoldása:

ω(t) = ω0e− t
τ ,

ahol a τ időállandó:
τ = 2ϱ

σB2 .

A cső tehát exponenciálisan lassulva fog forogni.

Megjegyzés. Az időállandó nem függ a cső méreteitől (mindössze annyit használtunk
fel, hogy d ≪ R ≪ L), csak a cső anyagának sűrűségétől és fajlagos vezetőképességétől,
valamint a mágneses mező erősségétől. Alumínium esetében 1 mT mágneses indukció
esetén az időállandóra két és fél percet kapunk.
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II. módszer. A cső egészében időegységenként

P = 1
σ

j2
effV

energia disszipálódik, ahol (a koszinuszos helyfüggés miatt)

jeff = 1√
2

jmax = 1√
2

σωBR,

és V = 2πLdR a cső térfogata. Ezt a disszipálódó energiát a cső mozgási energiá-
jának csökkenése fedezi:

P = −dEm

dt
,

ahol
Em = 1

2Θω2 = 1
2ϱV R2ω2.

Behelyettesítés és a deriválás elvégzése után:

1
2σω2B2R2V = −1

2ϱV R2 ·
d
(
ω2)

dt
= −1

2ϱV R2 · 2ω
dω

dt
,

egyszerűsítve és rendezve:
dω

dt
= −σB2

2ϱ
ω,

az előző módszer eredményével összhangban.

3. Egy tubusban szimmetrikusan elhelyeztünk két f1 = 50 cm és két f2 = 10 cm
fókusztávolságú gyűjtőlencsét a 7. ábrán látható módon. Sikerült a lencséket úgy
beállítani, hogy az optikai rendszeren átnézve a tárgyakat éppen olyannak látjuk,
mintha egy üres tubuson át néznénk azokat.

7. ábra 8. ábra

a) Mekkorák a lencsék közötti d és s távolságok?

b) Ha az előző optikai rendszert tubus nélkül megépítjük, és a kezünket megfelelő
helyen a lencsék közé helyezzük, akkor a 8. ábrán látható módon a kezünk egy részét
el tudjuk „tüntetni”. Magyarázzuk meg a jelenséget!

(Széchenyi Gábor)
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Megoldás. a) I. módszer. A tárgyakat éppen olyannak látjuk, mintha „semmi”
nem lenne ott, vagyis egy jobb oldalról érkező fénysugár a lencserendszeren át-
haladva éppen a beérkező fénysugár meghosszabbításán fog továbbhaladni. Első
lépésként tekintsünk egy olyan fénysugarat, melynek belépő és így kilépő része is
párhuzamos az optikai tengellyel. Ekkor – ahogy azt a 9. ábrán is látjuk – a lencse-
rendszer, valamint a sugármenet is tükörszimmetrikus. Ilyenkor a két belső lencse
között haladó fénysugár is párhuzamos az optikai tengellyel. Egy, a végtelenből
érkező párhuzamos nyalábot a két jobb oldali lencse párhuzamos nyalábbá képez,
azaz ez a két lencse konfokális, fókuszpontjaik egybeesnek:

s = f1 + f2.

f 1

sd

f 1f 2f 2

s

tükör

9. ábra

Ezután többféle módon megkaphatjuk a d távolság értékét, lássunk erre két
különféle utat!

1. út. Vegyünk fel egy tetszőleges helyen egy tárgyat, és határozzuk meg sorban
egymás után a négy lencse által alkotott képeit. A negyedik lencsén történő leké-
pezés után egy azonos állású és nagyítású, virtuális képet kell kapnunk az eredeti
tárgy helyén. A leképzési törvény szokásos alakját használva a képletekkel nehéz-
kesebb a számolás, ezért inkább használjuk a Newton-féle alakot (amely az x tárgy
és y képtávolságot a fókuszponttól méri, lásd a G. 855. gyakorlatot a KöMaL 2024.
májusi számában). Eszerint xy = f2.

Helyezzük a tárgyunkat az első lencse fókuszpontjától x1 távolságra. A követke-
zőkben jelölje xi (yi) a jobb oldalról számított i. lencsén történő leképezéshez tarto-
zó, jobb (bal) oldali fókuszponttól mért tárgytávolságot (képtávolságot). A 10. áb-
rán piros ponttal a képek helyeit, fekete ponttal a fókuszpontokat jelöltük.

Az első lencsén történő leképezés:

x1y1 = f2
1 ⇒ y1 = f2

1
x1

.

Mivel s = f1 + f2, a két lencse fókusza egybeesik, így

x2 = −y1,

A második lencsén történő leképezés:

x2y2 = f2
2 ⇒ y2 = f2

2
x2

= −f2
2

f2
1

x1.
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f 1

d

f 1f 2f 2 f 1f 2f 2f 1

x1

y  =   x1 2

s =   +f 1 f 2s =   +f 1 f 2

x3 y 2
y  =   x3 4

y  = 4f  + 2f  + d + x4 1 12

10. ábra

A 10. ábra alapján:
x3 = d − 2f2 − y2.

Tovább folytatva a harmadik lencsén történő leképezéssel:

x3y3 = f2
2 ⇒ y3 = f2

2
d − 2f2 − y2

,

x4 = −y3.

Végül a negyedik lencsén történő leképezés:

x4y4 = f2
1 ⇒ y4 = f2

1
x4

= −f2
1

y3
= −f2

1
f2

2
(d − 2f2 − y2) =

= −f2
1

f2
2

(
d − 2f2 + f2

2
f2

1
x1

)
= −f2

1
f2

2
(d − 2f2) − x1.

Ismét a 10. ábra alapján, ahhoz hogy a negyedik kép az első tárgy helyén legyen
a következő geometriai feltételnek kell teljesülnie:

−y4 = 4f1 + 2f2 + d + x1.

Ebből
f2

1
f2

2
(d − 2f2) + x1 = 4f1 + 2f2 + d + x1.

Látható, hogy az egyenletből kiesik az x1 változó, azaz tetszőleges helyre helyezve
a tárgyat, annak képe a négy lencsén történő leképezés után éppen a tárgy helyén
lesz. Az egyenletet tovább alakítva:

(
f2

1
f2

2
− 1
)

d = 2f2
f2

1
f2

2
+ 4f1 + 2f2,

(f2
1 − f2

2 )d = 2f2(f2
1 + 2f1f2 + f2

2 ).

A két középső lencse közötti távolságra az alábbi kifejezés adódik:

d = 2f2
(f1 + f2)2

f2
1 − f2

2
= 2f2

f1 + f2

f1 − f2
.

2. út. A lencserendszer középpontosan is szimmetrikus. Ha a beérkező fénysu-
gár meghosszabbítása a középponton menne át, akkor a kimenő fénysugár meg-
hosszabbítása is átmegy a középponton. Ilyenkor a fénysugárnak is középpontosan
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szimmetrikusnak kell lennie, azaz annak fizikailag is át kell haladnia a rendszer
középpontján (lásd a 11. ábrát). Ennek következményeként egy, a középpontban
elhelyezett tárgyat a két bal oldali lencse a középpontba képez le mint virtuális
képet.

f 1 f 1f 2f 2

középpont

11. ábra

Szerkesszük meg a középpontba helyezett h magasságú tárgy képét! Tekintsünk
egy, az optikai tengellyel párhuzamos, illetve egy, az f2 fókusztávolságú lencse
fókuszán áthaladó sugármenetet, ezeket zölddel, illetve kékkel rajzoltuk meg a 12.
ábrán.

A B

C

D F

E

G

H

f 1
f 2

O

h
f 2

f 1

2
df 1 f 22

2
d

h
h

f 2

f 2

2
d

12. ábra

A két lencse konfokális, így a zöld sugármenetet követve a kép méretére

OH = f1

f2
h

adódik. Az FGO és FED háromszögek hasonlóak, valamint

DF = f2 és FO = d

2 − f2,

ahonnan
DE = BC = f2

d
2 − f2

h.

Az ABC és AOH háromszögek is hasonlóak, amiből következik, hogy

BC

AB
= OH

AO
⇒

f2
d
2 −f2

h

f1
=

f1
f2

h

2f1 + f2 + d
2

.

Az egyenletet d-re megoldva a korábban megkapott végeredményre jutunk.
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A megadott fókusztávolságok behelyettesítése után:

s = f1 + f2 = 60 cm és d = 2f2
f1 + f2

f1 − f2
= 30 cm.

II. módszer. Vegyük fel a koordinátatengelyt az optikai tengelyen, középpontját
helyezzük az elrendezés közepére! A tárgy legyen a tengely x pontjában, amit a
jobb szélső lencse a z pontba képez le, ezt az első képet pedig a második lencse
az y pontba. A lencsék helyére is bevezetünk két új paramétert: az origótól mért
távolságukat (hogy rövidebbek legyenek a képletek, 13. ábra):

d2 = 1
2d, d1 = 1

2d + s.

d1 d2 d2 d10 xy 

13. ábra

A harmadik és negyedik lencse az első kettőnek a tükörképe, ezért számukra az
x és y pont a −x, −y párnak felel meg. A fényút megfordíthatóságát is kihasználva
arra jutunk, hogy a bal oldali két lencse a második képet akkor képezi pontosan
vissza az x pontba, ha az y = L(x) páratlan függvény.

Írjuk fel az első két lencsére a leképezési törvényt a (k − f)(t − f) = f2 Newton-
féle alakot használva:

(x − d1 − f1)(d1 − z − f1) = f2
1 ,

(z − d2 − f2)(d2 − y − f2) = f2
2 .

Ejtsük ki a z ismeretlent úgy, hogy mindkét egyenletet elosztjuk a bal oldal z-t
nem tartalmazó tényezőjével, majd összeadjuk ezeket:

d1 − d2 − f1 − f2 = f2
1

x − d1 − f1
+ f2

2
d2 − y − f2

.

A nevezőkkel beszorozva:

(d1 − d2 − f1 − f2)(x − d1 − f1)(d2 − y − f2) = f2
1 (d2 − y − f2) + f2

2 (x − d1 − f1).

Mielőtt elvégeznénk az összes szorzást, nézzük meg, melyik tagokra van szükségünk.
A fenti egyenlet egy

Axy + Bx + Cy + D = 0

implicit alakra vezet, ahol

A = d1 − d2 − f1 − f2,(1)

Középiskolai Matematikai és Fizikai Lapok, 2025/1 51



i
i

2025.1.4 – 21:12 – 52. oldal – 52. lap KöMaL, 2025. január i
i

i
i

i
i

B = f2
2 + A(f2 − d2),(2)

C = −f2
1 − A(d1 + f1),(3)

D = f2
1 (d2 − f2) − f2

2 (d1 + f1) + A(d1 + f1)(d2 − f2) = BC + f2
1 f2

2
A

.(4)

A keresett L függvény:
y = −Bx + D

Ax + C
.

Ez akkor páratlan, ha α) A = D = 0, vagy β) B = C = 0.
Az α) esetben az (1) egyenletből A = 0 feltétellel:

(5) s = d1 − d2 = f1 + f2.

Ez a távolság ugyanakkora, mint a Kepler-féle távcsőben, vagyis eszközünk nem
más, mint két kifelé fordított Kepler-távcső. A d középső távolság meghatározá-
sához nézzük a D együtthatóra vonatkozó egyenletet. A (4) egyenletből D = 0
feltétellel:

(6) f2
1 (d2 − f2) − f2

2 (d1 + f1) = 0.

Helyettesítsük be (5)-ből d1 = d2 + f1 + f2-t, és oldjuk meg d2-re:

f2
1 (d2 − f2) − f2

2 (d2 + 2f1 + f2) = 0

d2 = f2
f2

1 + 2f1f2 + f2
2

f2
1 − f2

2
= f2

f1 + f2

f1 − f2
⇒ d = 2f2

f1 + f2

f1 − f2
.

Az eredményen látszik, hogy a megoldhatósághoz teljesülnie kell az f1 > f2 egyen-
lőtlenségnek. A második kép helye végül:

(7) y = −B

C
x =

(
f2

f1

)2
x.

A β) megoldásról megmutatjuk, hogy fordított képet ad, ezért nem felel meg a
feladat leírásának. A kép annyiszor fordul meg az eszközben, ahány valódi, ernyőn
felfogható kép létrejön. Az α) megoldásban például a párhuzamos fénynyaláb (vég-
telen távoli tárgy) a középső tartományban szintén párhuzamos, a két szélsőben a
lencsék közös fókuszpontjában valódi kép jön létre, így a kétszer megfordított kép
egyenes állású lesz. A β) megoldásnál a második kép az

y = − D

Ax

helyre kerül, a végtelen távol levő tárgy második képe tehát az origóban lesz. Mivel
a sugármenet szimmetrikus, ez mindenképpen páratlan számú képfordítást jelent,
a végső kép így fordított állású lesz.

A feladat a) kérdésére tehát a válasz (a korábbi eredményekkel összhangban):

s = f1 + f2 = 60 cm és d = 2f2
f1 + f2

f1 − f2
= 30 cm.
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Megjegyzések. 1. A kép és a tárgy összetett optikai eszközöknél is felcserélhető – ez a
fénysugár megfordíthatóságából következik. Ha a kettő ugyanott van, akkor a felcserélhe-
tőség az eszköz nagyítására az

N∗ = K

T
= T

K
= 1

N∗

feltételt adja, amiből
N∗2 = 1 és N∗ = ±1,

vagyis a kép ugyanakkora, de lehet egyenes vagy fordított állású.
Ellenőrizzük, hogy a nagyítás az α) megoldásban minden tárgytávolságra +1. Egy

lencse nagyítása (amit fordított állású kép esetén negatívnak tekintünk):

N = K

T
= −k

t
= f

f − t
= f − k

f
.

A teljes nagyítás a négy lencse nagyításának szorzata. Az első és harmadik kép helyét nem
számoltuk ki, de az egyes lencsék nagyításának felírásánál szerencsére két-két lehetőségünk
van:

N∗ = f1

f1 + d1 − x
· f2 − d2 + y

f2
· f2

f2 − d2 − y
· f1 + d1 + x

f1
.

A szorzások elvégzésekor vegyük észre, hogy a számláló és a nevező egyforma tagokat
tartalmaz, csak némelyiket eltérő előjellel:

(8) N∗ = [(f1 + d1)(f2 − d2) + xy] + [x(f2 − d2) + y(f1 + d1)]
[(f1 + d1)(f2 − d2) + xy] − [x(f2 − d2) + y(f1 + d1)] .

A számláló és nevező eltérő előjelű részéről megmutatjuk, hogy zérus:

x(f2 − d2) + y(f1 + d1) = x

f2
1

[f2
1 (f2 − d2) + f2

2 (f1 + d1)] = 0.

(Ehhez használtuk a (7) eredményt, a szögletes zárójelben levő rész pedig (6) alapján
zérus.) Tehát N∗ = 1, bárhol is van a tárgy.

2. A β) megoldás a következő:

s =
√

2f1f2, d = 2f2
f1 − √

2f1f2

f1 + f2 − √
2f1f2

, f1 > 2f2.

A nagyítás (8) kifejezésében most az azonos előjelű rész, a számláló és nevező első tagja
tűnik el:

(f1 + d1)(f2 − d2) − D

A
= (f1 + d1)(f2 − d2) − f2

1 f2
2

A2 = 0,

ahol előbb behelyettesítettük (4) egyenletből D-t, majd pedig az

f2
1

A
= −(d1 + f1), f2

2
A

= d2 − f2

értékeket, amik a B = C = 0 feltétellel a (2) és (3) egyenletből adódnak. A nagyítás tehát
ebben az esetben N∗ = −1, bárhol van a tárgy.

b) Ha megnézzük a 9. ábrán a párhuzamos nyalábot, láthatjuk, hogy a két belső
lencse között f2

f1
arányban, esetünkben 1

5 -öd részére szűkül össze. Ha a kezünket
úgy rakjuk be a két belső lencse közé, hogy ez a szűk nyaláb a széttartott ujjaink

Középiskolai Matematikai és Fizikai Lapok, 2025/1 53



i
i

2025.1.4 – 21:12 – 54. oldal – 54. lap KöMaL, 2025. január i
i

i
i

i
i

között át tud menni, akkor nem fog kitakarni semmit, és a teljes lencserendszeren
át a hátteret látjuk. A 14. ábrán nemcsak a párhuzamos, hanem kis szögben érkező
nyalábokat is tekintettünk, és szürkével rajzoltuk be azokat a tartományokat, ahová
helyezett tárgyak nem fognak semmit kitakarni.

f 2
f 1

f 2
f 1

14. ábra

❄

Az ünnepélyes eredményhirdetésre és díjkiosztásra 2024. november 22-én dél-
után került sor az ELTE TTK Eötvös termében. Megemlékeztünk az 50 és 25 évvel
ezelőtti Eötvös-versenyről, ismertettük az akkori feladatokat és a győztesek nevét.
Az 50 évvel ezelőtt díjazottak közül Vladár Károly – aki az idei évtől a versenybi-
zottság tagja – volt jelen, a 25 évvel ezelőttiek közül Hegedűs Ákos, Gáspár Merse
Előd és Terpai Tamás – ők pár mondatban beszéltek a versennyel kapcsolatos em-
lékeikről és a pályafutásukról. A 75 évvel ezelőtti győztes Holics László és az 50
évvel ezelőtti II. díjas Szép Jenő néhány soros üdvözletet küldött. Ezután követke-
zett a 2024. évi verseny feladatainak és megoldásainak bemutatása. Az 1. feladat
megoldását Vigh Máté, a 2. feladatét Vankó Péter, a 3. feladatét Széchenyi Gábor
ismertette.

Az esemény végén került sor az eredményhirdetésre. A díjakat Ormos Pál, az
Eötvös Loránd Fizikai Társulat elnöke adta át.

I. díjat a versenybizottság nem adott ki.
Az első feladat helyes, a második feladat lényegében helyes megoldásáért és a

harmadik feladatban elért részeredményért második díjat nyert Bencz Benedek, a
Baár–Madas Református Gimnázium, Általános Iskola és Kollégium 12. osztályos
tanulója, Horváth Norbert tanítványa.

A második feladat helyes megoldásáért és a másik két feladatban elért részered-
ményekért harmadik díjat nyert Téti Miklós, a Budapesti Fazekas Mihály Gyakorló
Általános Iskola és Gimnázium 11. osztályos tanulója, Schramek Anikó tanítványa.

Egy feladat lényegében helyes megoldásáért és kisebb részeredményekért di-
cséretet kapott Iliás Gergely, az ELTE fizika BSc szakos hallgatója, aki a Jedlik
Ányos Gimnáziumban érettségizett Radnai Tamás tanítványaként, Masa Barna-
bás, a Szegedi Radnóti Miklós Kísérleti Gimnázium 12. osztályos tanulója, Csányi
Sándor tanítványa, valamint Tóth Kolos Barnabás, a Budapest V. Kerületi Eötvös
József Gimnázium 11. osztályos tanulója, Varga Balázs tanítványa.

A második díjjal az Andersen Adótanácsadó Zrt. és a Nanorobot Vagyonkeze-
lő Kft. adományából 90 ezer forint, a harmadik díjjal 60 ezer, a dicsérettel 40 ezer
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